
Beyond the PDP-11: Architectural support
for a memory-safe C abstract machine

David Chisnall Colin Rothwell
Robert N. M. Watson

Jonathan Woodruff Munraj Vadera
Simon W. Moore Michael Roe

University of Cambridge
firstname.lastname@cl.cam.ac.uk

Brooks Davis Peter G. Neumann
SRI International

{brooks,neumann}@csl.sri.com

Abstract
We propose a new memory-safe interpretation of the C ab-
stract machine that provides stronger protection to benefit
security and debugging. Despite ambiguities in the specifi-
cation intended to provide implementation flexibility, con-
temporary implementations of C have converged on a mem-
ory model similar to the PDP-11, the original target for C.
This model lacks support for memory safety despite well-
documented impacts on security and reliability.

Attempts to change this model are often hampered by as-
sumptions embedded in a large body of existing C code, dat-
ing back to the memory model exposed by the original C
compiler for the PDP-11. Our experience with attempting to
implement a memory-safe variant of C on the CHERI ex-
perimental microprocessor led us to identify a number of
problematic idioms. We describe these as well as their in-
teraction with existing memory safety schemes and the as-
sumptions that they make beyond the requirements of the C
specification. Finally, we refine the CHERI ISA and abstract
model for C, by combining elements of the CHERI capabil-
ity model and fat pointers, and present a softcore CPU that
implements a C abstract machine that can run legacy C code
with strong memory protection guarantees.

1. Introduction
A programming language defines both a concrete syntax and
an abstract machine. The abstract machine describes the en-
vironment that a programmer should expect, such as the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694367

range of sizes, behaviors, and representations of primitive
types. A fully specified abstract machine for a language en-
capsulates all assumptions that are safe for a programmer to
make about every possible implementation of the language.

Concrete implementations may perform native compila-
tion to machine code, provide a virtual machine with a com-
plete environment, or choose an intermediate step with com-
plex parts of the system implemented as operating-system
or library routines. The last approach is the most common
for the C language, with memory allocation and certain
complex floating-point operations implemented in shared li-
braries, but most language constructs compiled directly to
short sequences of machine instructions. A key aspect of
mapping the abstract model onto a target platform is the
memory model, which defines (among other things) how ab-
stract ideas of pointers and objects (ranges of memory with
an associated type) are represented on the target—for exam-
ple, as words and ranges of bytes in a flat address space.

The C abstract machine was originally designed to be
sufficiently close to the PDP-11 that a simple compiler
could achieve good performance translating C statements
into short sequences of PDP-11 instructions. The abstract
machine was subsequently extended to allow very differ-
ent implementations. Early targets included the Honeywell
6000, IBM System/370, and Interdata 8/32 [25]. In spite of
this generalization, most contemporary computers designed
to support C programs utilize instruction sets that are rem-
iniscent of the PDP-11, particularly in terms of memory
model. The PDP-11 model is appealing due to its simplicity
and its portability; however, lack of memory-safety proper-
ties leaves code compiled to that model subject to memory
corruption in the face of bugs. More concerningly, these
bugs frequently prove exploitable by attackers with broad
scope for malicious data and control-flow modification [29];
for example, CWE/SANS lists “Classic Buffer Overflow”,
possible due to lack of memory safety, as the third most
dangerous software error [21].



Bugs with respect to the abstract language model may be
vulnerabilities, but the degree to which they are exploitable
by attackers depends on concrete implementation choices
such as stack layout [2]. Refinements to language implemen-
tations (such as memory protection) therefore offer opportu-
nities to mitigate vulnerabilities as well as make debugging
easier [26]. The potential benefits of bounds checking and
other integrity techniques have been well documented by
work such as Cyclone [17], CCured [23], SoftBound [22],
HardBound [12], and CHERI [35]. Deployment of these
techniques is hampered not just by performance concerns
but also by whether current software relies on specific im-
plementation choices. Evaluation cases have frequently been
limited to benchmarks and application software that might
be termed “extremely well-behaved C” rather than the low-
level software that would most benefit from their support
(e.g., buffer-centered packet parsing).

Understanding and addressing the practical effects of
stronger memory models is critical in deploying them to mit-
igate vulnerabilities. We therefore propose a new interpreta-
tion of the C abstract machine that affords stronger memory-
protection properties. We evaluate this approach against ex-
isting C-language corpora and a practical implementation
via our open-source Capability Hardware Enhanced RISC
Instructions (CHERI) softcore processor.

We first investigate how commonly held assumptions
about pointer behavior go beyond the rules mandated by
the C abstract machine, at times incorporating implicit as-
sumptions regarding the PDP-11 memory model. We do this
by surveying a variety of pointer-centered C idioms using
an LLVM-based static analyzer over a large open-source ap-
plication corpus. This allows us to identify a tradeoff space
between protection and compatibility. Next, we link these
ideas to portions of the C abstract machine—as described in
the C11 specification [16]—that are implementation defined,
investigating the possible implementation space.

We discuss the problems with supporting these idioms
on existing models, including our CHERI ISA (a RISC
instruction-set architecture that implements fine-grained
memory protection). We propose a refinement to the CHERI
ISA, CHERIv3 [34], informed by state-of-the-art hardware-
assisted fat-pointer schemes, to improve software compati-
bility. We evaluate performance and compatibility with re-
spect to both hardware and software by implementing two
capability-based memory models and exploring the impact
(including lines-of-code changes) on a set of C-language
applications, relative to the PDP-11 memory model.

We demonstrate that it is possible for a memory-safe im-
plementation of C to support not just the C abstract machine
as specified, but a broader interpretation that is still compati-
ble with existing code. By enforcing the model in hardware,
our implementation provides memory safety that can be used
to provide high-level security properties for C TCBs, just as

memory safety is a building block for higher-level security
abstractions in Java.

2. Common idioms
The CHERI ISA [33] introduces memory safety to a RISC
ISA by supplementing general-purpose registers with ca-
pability registers and tagged memory, drawn from the
capability-system model, providing strong integrity protec-
tion and bounds checking for pointers. In attempting to im-
plement a C compiler for early versions of the CHERI ISA,
we found that it was very easy to support well-behaved C
code. On attempting to compile nontrivial C programs, we
discovered a number of programs failed to either compile
or run correctly, due to different interpretations of the C ab-
stract machine. We collected examples of these failures and
produced the following taxonomy of common C idioms that
are difficult for memory-safe implementations to support.

To explore the extent to which existing programs depend
on a traditional view of memory, we modified the Clang
compiler to identify potentially problematic pointer oper-
ations, as well as code that removes the const qualifier.
LLVM intermediate representation (IR) is typed, with point-
ers and integers being distinct. Type-safe pointer arithmetic
is performed by the GetElementPtr instruction. The PDP-
11 model allows arbitrary arithmetic to construct valid ad-
dresses in a flat address space, but is incompatible with
memory safety that requires a substrate to be aware of ob-
jects and enforce bounds checking. We can detect assump-
tions of the PDP-11 model (and violations of the type sys-
tem), as LLVM must generate ptrtoint and inttoptr in-
struction pairs that turn a pointer into an integer, perform
arithmetic, and then convert it back.

Our modified LLVM identified all instances of pointer
arithmetic that survive optimization and performed some
simple categorization. We ignore those that do not survive
optimization because they will have no effect on run-time
enforcement. We compiled a sample corpus of around 2M
lines of popular C code with this modified compiler, cate-
gorized violations by inspecting the code, and extracted test
cases demonstrating the common patterns.

Table 1 shows a summary of the total number of occur-
rences of each of the idioms that we have identified. Some
of these are entirely valid within the C memory model, some
depend on implementation-defined behavior, and some de-
pend on undefined behavior that happens to be implemented
in a specific way on common compilers.

Note that these values are a result of machine-assisted
human categorization, and are intended to be indicative of
the frequency of these idioms rather than accurate measures.
Breaking these idioms will break existing code, and our
analysis gives a rough idea of the scope of such breakage.

Unlike prior work, such as STACK [32], we are not look-
ing purely for cases where programs rely on undefined be-
havior and therefore work only coincidentally. We are also



PROGRAM DECONST CONTAINER SUB II INT IA MASK WIDE LOC

ffmpeg 150 0 800 4 0 0 4 0 693,010
libX11 117 0 19 9 1 0 0 5 120,386

FreeBSD libc 288 0 216 2 13 50 184 17 136,717
bash 43 0 207 11 0 0 15 4 109,250

libpng 20 0 175 1 0 0 0 0 50,071
tcpdump 579 0 9 1299 0 0 0 0 66,555

perf 575 151 46 0 53 151 31 4 52,033
pmc 2 0 0 0 18 0 0 0 8,886
pcre 98 0 52 0 0 0 0 0 70,447

python 494 0 358 1 109 0 131 8 383,813
wget 55 0 61 0 3 0 1 10 91,710
zlib 4 0 24 0 0 0 0 0 21,090
zsh 29 0 267 0 0 0 5 5 98,664

TOTAL 2491 151 2236 1557 197 201 371 53 1,902,632

Table 1. Summary of difficult idioms in popular C packages.

looking for cases where programs rely on implementation-
defined behavior related to a specific understanding of the
machine’s memory model, and thus would be fragile in the
presence of different interpretations. When a compiler en-
counters undefined behavior, it is free to do whatever it
wishes. For example, if the value of a is the result of un-
defined behavior, then it is acceptable for the compiler to
optimize a == b and a != b to the same value. In contrast,
implementation-defined behavior must be self-consistent.
For example, the value of sizeof(int) is implementation
defined and may be 4, 8, or some other value, but must be
consistent within a program.

We assume that all of the code that we inspected works
correctly, that all of the idioms that we find are intentional,
and that the code depends on them working as expected. We
identified the following idioms:

Deconst refers to programs that remove the const qualifier
from a pointer. This will break with any implementation
that enforces the const at run time. §6.7.3.4 [16] states:
If an attempt is made to modify an object defined with

a const-qualified type through use of an lvalue with non-
const-qualified type, the behavior is undefined.

This means that such removal is permitted unless the
object identified by the pointer is declared const, but this
guarantee is very hard to make statically and the removal
can violate programmer intent.
We would like to be able to make a const pointer a
guarantee that nothing that receives the pointer may write
to the resulting memory. This allows const pointers to be
passed across security-domain boundaries.

Container describes behavior in a macro common in the
Linux, BSD, and Windows kernels that, given a pointer
to a structure member, returns a pointer to the enclosing

structure [20]. This may or may not be permitted behav-
ior according to the standard, due to the ambiguous def-
inition of ‘object’. Use of this idiom would break with
any implementation that associates strict bounds check-
ing with a pointer based on its static type, but not one that
employs the bounds of the original object.
This is a special case of pointer subtraction, but its
use breaks assumptions that we would like to make for
pointer bounds: A compiler can statically insert bounds
information on a pointer to a structure field, which can be
enforced by the underlying substrate—preventing some
categories of pointer error with a fine granularity.

Sub refers to any arbitrary pointer subtraction. High-level
languages commonly lack pointer subtraction, preferring
a model where pointers are always references to objects
(a base and a bounds), and accesses to object fields or ar-
ray elements require that the programmer have a pointer
to the object. With pointer subtraction, bounds checking
requires an offset as well as the base and bounds and so
bounds-checked pointers are larger.

II refers to computation of invalid intermediate results. The
C specification allows pointers to point one element after
the end of an array, but not be dereferenced when point-
ing outside of a valid object. This case refers to pointer
arithmetic where the end result is within the bounds of an
object, but intermediate results are not. This is undefined
behavior according to the C specification and makes even
conservative garbage collection impossible unless a valid
pointer to the object is guaranteed to also exist.
Without this being expected to work, we could trap as
soon as a pointer went out of range, rather than waiting
until it is dereferenced. This would be useful mostly as a



debugging aid, as there are no extra security or reliability
guarantees from preventing these operations.

Int refers to storing a pointer in an integer variable in
memory—implementation-defined behavior in C. We ig-
nore variables where the store-load sequence is opti-
mized away in calculating these. Disallowing this behav-
ior makes accurate garbage collection possible, as the
compiler can statically track every pointer use. It also
eliminates a category of error where a value is manip-
ulated as an integer and later interpreted as a pointer.

IA refers to performing integer arithmetic on pointers—
such as storing a pointer in an integer value and then
performing arbitrary arithmetic on it. This is a more
general case of the Int idiom and relies on the same
implementation-defined behavior. It also makes conser-
vative garbage collection impossible, as the garbage col-
lector can assume that every integer may be a pointer and
still do a reasonable job, but cannot do any collection if
pointers can be easily hidden.

Mask refers to simple masking of pointers. For example,
to store some other data in the low bits. This relies on
pointers having a known representation. Breaking this al-
lows more efficient pointer representations, for example
the “low-fat pointers” [18] representation for fat pointers.

Wide refers to storing a pointer in an integer variable of a
smaller size. This is undefined according to the C spec-
ification, but may work if you are able to guarantee that
pointers are within a certain range, for example by allo-
cating memory with malloc and the MAP_32BIT flag.
Code using this idiom is broken by existing implementa-
tions, and most likely reflects bugs in the code. We were
surprised to see examples of this in programs that we
inspected, but fortunately it is sufficiently rare that fix-
ing all of the cases would be easy in these codebases.
This idiom is the result of assuming that sizeof(int)
== sizeof(void*) or sizeof(int32_t)== sizeof

(void*). This assumption was true for desktop comput-
ers for a long time, and mobile devices until recently.
Had we run the same experiment 15 years ago, we ex-
pect we would have seen many more instances of this
assumption. We conclude that C codebases adapt (over
time) to changes in pointer behavior, and that additional
small changes are not impossible to support.

Last Word refers to accessing an object as aligned words
without regard for the fact that the object’s extent may
not include all of the last word. This is used as an op-
timization for strlen() in FreeBSD libc. While this is
undefined behavior in C, it works in systems with page-
based memory protection mechanisms, but not in CHERI
where objects have byte granularity. We have found this
idiom only in FreeBSD’s libc, as reported by valgrind.

The relatively large number of instances of pointer sub-
traction in C code that we observed (Table 1) supports our
anecdotal observation that the lack of this support in the orig-
inal C implementation for CHERI (described in detail in the
next section) would be problematic. We have not been able
to find the Last Word pattern by static analysis and thus have
not included it. Note that most of the cases of invalid inter-
mediates also involve subtraction; we have predominantly
classified instances as subtraction if the pointers are deref-
erenced immediately after the subtraction, indicating either
that the code is buggy or the pointer is valid.

Arbitrary arithmetic on integers that are then cast to
pointers is rare. The majority of the occurrences that we have
seen are in the malloc() implementation in FreeBSD libc
(jemalloc [13]). This is difficult to avoid, as malloc() is
outside of the C abstract machine. The C specification indi-
cates that each block of memory returned by malloc() is an
object and that it is undefined behavior to use it after calling
free(). This means that, with a strict interpretation of the
specification, it is impossible for the code inside free() to
recycle the memory. Similarly, the memory that has not yet
been returned by malloc() is not yet part of the C abstract
machine. In real implementations, the compiler makes suffi-
cient allowances to permit these functions to be implemented
in C atop some more primitive functionality (mmap() or brk
(), which deals with pages of memory.

We investigate tcpdump more closely in §5.2, where we
discuss porting it to two CHERI variants. It is worth noting
that numerous cases of invalid intermediates involve bounds-
checking code: These are not required at all if the underly-
ing implementation supports bounds checking. We therefore
observe that, for at least some code, modifications to allow
compatibility with a restricted memory-safe implementation
of C would simplify the code.

3. The C abstract machine
Having identified a set of idioms that an implementation
must support, we now look at the requirements imposed
by the language. It is possible to implement the C abstract
machine for any Turing-complete target, but that does not
mean it is easy or efficient to do so. When considering a low-
level language like C, there are three important requirements
on a compilation target:

Expressiveness: It must be sufficiently expressive to cap-
ture the semantics of the abstract machine.

Efficiency: The primitive operations in the abstract machine
must map simply to primitive operations in the underly-
ing system, allowing low-overhead implementation.

Exposure: The features of the underlying system must be
exposed to the programmer. For example, the language
should expose the register types of the underlying archi-
tecture as primitive types.



A language can be described as low level with regard to
a particular platform only if it meets these requirements. It
must be possible to compile the language to run on the target
system, but also to do so without introducing significant
abstraction layers that hinder performance or hide the details
of the underlying architecture.

This section discusses the flexibility that the C abstract
machine allows implementers, both with respect to the prim-
itive types used for memory access (integers and pointers),
and the layout and semantics of memory itself. We take par-
ticular note of changes that can be made to enforce mem-
ory safety without compromising the low-level nature of C.
The C abstract machine does not include an idea of address
translation—intentionally, as not all targets have MMUs—
so, from the perspective of userspace C programs running on
an operating system, we always mean virtual memory when
we refer to memory as described by the abstract machine.

3.1 Primitive types
The C specification is intentionally vague on the representa-
tion of most primitive types, allowing significant variety.

3.1.1 Ranges and representations
Before we can consider modifying how pointers are im-
plemented in C, we should examine the requirements that
the specification places on the implementations of primi-
tive types. §5.2.4.2.1 [16] is devoted to the ranges of integer
types. It defines a minimum range that each can represent.
Implementations may support larger ranges, with the excep-
tion of the char type. C11 requires it to be at least 8 bits,
but POSIX requires that it is exactly 8 bits, providing a con-
crete practical limit for implementations wishing to run code
designed for any UNIX-like system.

Within this size, the only constraint is that a signed char

must be able to represent integers between -127 and 127.
Most modern machines opt to use two’s complement arith-
metic, as it simplifies many operations. Two’s complement
representation allows values from -128 to 127 to be repre-
sented. This leaves one value that can be represented, but
which is outside of the range required by the specification.

Most arithmetic operations can overflow. The §6.2.5 [16]
defines that overflow of unsigned values should wrap.
Signed overflow is undefined and may produce a trap rep-
resentation: A value that may trap if used and whose use
makes any subsequent behavior undefined.

These two facts lead to a potential implementation that
allows cheap trapping on overflow in hardware. All signed
arithmetic that overflowed would be set to this trap value,
and all signed arithmetic operations that took this value and
an input would raise an exception. This would necessitate
different instructions for signed and unsigned addition, but
there is some precedent for this. MIPS, for example, includes
operations that differ only by whether they trap on overflow.

Trapping on signed overflow is not a new idea. Both clang
and gcc provide a -ftrapv flag that causes every signed

arithmetic operation to be followed by a branch-on-carry
with a trap instruction (ud2 on x86) at the destination. The
clang variant also permits a handler function to recover from
the overflow. This was used to implement a prototype of
the As-if Infinitely Ranged (AIR) proposal by CERT [11].
Similar work was done later by MIT’s KINT [31] system,
defining an integer equivalent of the not-a-number (NaN)
values found in floating point systems. These efforts have all
been purely focused on the compiler, and not on extending
the underlying architecture.

3.1.2 Pointers
In BCPL [24], an ancestor of C, pointers and integers were
both words: pointers were words that could be derefer-
enced. In contrast, C was intended to support minicomputer
and mainframe architectures, including segmented memory
models and microcontrollers with separate integer and ad-
dress registers. The PDP-11 model of C follows closely from
BCPL: pointers are integers, any pointer can be cast to any
sufficiently large integer type, and results of casting can be
used as pointers. Pointer arithmetic is just integer arithmetic.

This behavior is not mandated by the C standard. The
abstract machine divides memory into objects: regions of
memory with an associated type. Pointer arithmetic that ends
outside of the original object is undefined, with the exception
that pointers may point one element past the end of arrays,
but such a pointer is valid only for comparison, not for deref-
erencing. §7.20.1.4 [16] defines an optional intptr_t as an
integer type that can store a pointer and have the pointer
value preserved. There is no guarantee that any arithmetic
on intptr_t will result in a valid pointer and dereferencing
any such pointer is implementation defined. Pointer compar-
isons between pointers to different objects are undefined, al-
lowing the implementation to move objects as long as it does
so atomically with respect to the running code.

3.1.3 The null pointer
As per §6.3.2.3 [16], the integer value 0 has a special mean-
ing when cast to a pointer: It must be distinct from any valid
object in the system. This value is relevant (according to the
specification) only when it is an integer constant expression
that evaluates to 0. This distinction is important. For exam-
ple, the specification does not require that the following be a
null pointer:

int i = 0; void *p = (void*)i;

This distinction is difficult to support in modern compil-
ers, as discussed in a recent LLVM mailing list thread [1].

3.2 State of the unions
Footnote 95 in §6.5.2.3 [16] contains the exception to the
normal aliasing rules:
If the member used to read the contents of a union object is

not the same as the member last used to store a value in the
object, the appropriate part of the object representation of



the value is reinterpreted as an object representation in the
new type...This might be a trap representation.

This requirement is one of the things that makes C useful
in low-level contexts: It is possible to subvert the type system
and interpret memory as different forms. Supporting unions
can be difficult in environments with guarantees about type
safety but is important for our exposure requirement.

3.3 Code and data memory
C is intended to be usable on microcontrollers with separate
address spaces for code and data. A numerical pointer value
may be different when interpreted as referring to data and
code. In particular, a void* may refer to any kind of data,
but is not guaranteed to be able to represent function point-
ers. POSIX breaks this separation by introducing the void
*dlsym(. . .) function, used to look up a symbol in a shared
library. This is beyond the scope of the C language specifi-
cation, which has no notion of shared libraries, but is very
important, e.g., for finding plugin interfaces. Unfortunately,
looking up function pointers is a common use for dlsym,
and is not defined behavior in C.

3.4 Const enforcement
The const qualifier indicates that a pointer should not be
used to write memory. In typical C implementations, the im-
mutability of const-qualified objects varies. Literal strings
are mapped read-only into the running process. Attempting
to modify one will cause a segmentation fault. It is there-
fore safe to remove a const qualifier only if you know ex-
actly where it was inserted. Unfortunately, the C specifica-
tion contains functions such as memchr, which takes a const
-qualified pointer as the first argument, and returns a (non-
const) pointer derived from it, stripping the const qualifier.

This function signature exists because the C type system
cannot express the real requirement: that the function has
a contract not to modify the buffer, and that the mutability
associated with the returned pointer should be equal to the
rights that the caller has to the first argument.

3.5 Pointer provenance
The C specification makes the ability to store pointers in in-
teger variables and then recreate the original pointer imple-
mentation defined, but many software packages in practice
depend on this functionality. In common implementations,
as long as the integer is derived from the initial pointer, and
the result of arithmetic is within the bounds of the object,
then arbitrary arithmetic is permitted. The notion of an inte-
ger derived from a pointer is somewhat vague.

The xor linked list is a simple example where this is prob-
lematic. Each node has a pointer that is the address of the
previous node xor’d with the address of the next node, al-
lowing traversal in both directions. The pointer is derived
from the addresses of both objects. This is particularly chal-
lenging when attempting to produce a formal semantics of

C. This idiom is now very uncommon, due to its poor inter-
action with pipelined processors.

Relying on the alignment to identify unused bits in a
pointer is more common. On a 64-bit platform, most values
are 8-byte aligned, and so the low 3 bits in a pointer are
zero. It is therefore safe for a program to store information
in these bits. The ARMv8 architecture [3] extends this with
a mode guaranteeing that the MMU will not use the top 8
bits in a virtual address when performing address translation,
allowing them to be used for storing program-specific data.

3.6 Garbage hoarding
To add full memory safety to C would require temporal as
well as spatial safety. We can add spatial safety within the
confines of the abstract machine by changing the represen-
tation of pointers to include bounds. Efficiently adding tem-
poral safety is more difficult.

Existing conservative garbage collectors for C, such as
the Boehm-Demers-Weiser collector [5], fail in cases out-
lined in §3.5 because they make assumptions about pointer
representations. The ability to recover pointers from integers
arithmetic makes accurate garbage collection impossible be-
cause any integer value may potentially be combined with
others to form a valid address.

It is not possible to implement a copying or relocating
garbage collector if it is possible for object addresses to es-
cape from the collector. The conservative garbage collectors
that are possible allow garbage objects to be accidentally
hoarded by integers that contain valid addresses.

We believe that efficient implementations of full temporal
safety will require C implementations that are valid within
the requirements of the C abstract machine, but have unex-
pected behavior for much existing code. It is undefined be-
havior in C to compare two pointers to different addresses
but in spite of this it is common to use addresses for compar-
ison in trees or as input to hashes for hash tables. This works
in current implementations but would break if a collector is
allowed to modify addresses.

4. Refining the CHERI model
Our CHERI processor provides a fine-grained memory pro-
tection model via memory capabilities, which are hardware-
enforced unforgeable references to regions of memory. In
the CHERI world, all memory is accessed via a memory ca-
pability. The ISA is a superset of MIPS IV, an existing 64-bit
ISA, and can run unmodified MIPS code.

Version 2 of the CHERI ISA [35] was created based on
initial experiences attempting to build a capability system
that was a usable compiler target for C. For example, this
change propagated tag bits into capability tag bits, rather
than preventing memory without tag bits from being loaded
into capability registers. This was motivated by the need for
memcpy() (which is called explicitly by the user and implic-
itly by the compiler) to be able to copy data without being



aware of whether it contained pointers. A similar require-
ment applies to unions.

CHERIv2 memory capabilities are represented as the
triplet (base, bound, permissions), which is loosely packed
into a 256-bit value. Here base provides an offset into a vir-
tual address region, and bound limits the size of the region
accessed; for CHERIv2 they are each 64-bits in length. For
a discussion of permissions, see [33]. Capabilities reside ei-
ther in a dedicated register file or can be spilled to mem-
ory, where their integrity is preserved by hardware-managed
tagged memory. Capabilities must be naturally aligned and
there is a single tag bit per 256 bits of memory. Conven-
tional stores to an in-memory capability cause the tag bit
to be cleared, invalidating the capability. Special capability
load and store instructions allow capabilities to be spilled
to the stack or stored in data structures, just like pointers.
CHERIv2 supports use of capabilities as C pointers, with
the caveat that pointer subtraction is not allowed.

Memory accesses are indirected via capabilities in three
ways. Instruction fetches are relative to the program counter
capability (PCC). Legacy MIPS loads and stores are rela-
tive to the default data capability. Finally, the CHERI ISA
provides a set of load and store instructions that take an ex-
plicit capability register operand. The only instructions that
modify a capability strictly reduce its permissions, either by
increasing the base (and decreasing the length by the same
amount), decreasing the length, or reducing the permissions.

When a process starts, it has a default data capability that
covers the entire user address space. This can be partitioned
and restricted, for example by limiting its use to the mem-
ory allocator, and referring to other memory purely via ca-
pabilities returned from the allocator, the linker, or from the
stack capability. It is the responsibility of the allocator (or
the compiler, for stack allocations) to correctly set the length
on capabilities. Once set, it is impossible to use the resulting
capability to gain access to memory outside the object.

Code compiled for our extension to the CHERI ISAv2
runs atop the FreeBSD operating system on a modified
CHERI processor synthesized to run in FPGA at 100MHz.
Our goal is to demonstrate that it is possible to meet all of
our requirements for a low-level language compilation target
from an instruction set that provides spatial memory safety.
In particular, all of the mechanisms provided by the hard-
ware can be exposed to a C programmer directly, and all of
the aspects of memory behavior defined by the abstract ma-
chine are translated into simple machine instructions without
any complex abstraction layers or support libraries.

4.1 Converging capabilities and fat pointers
CHERI ISAv2 capabilities provide C-like pointer semantics
subject to non-increasing rights imposed by the capability
model. The CHERI ISAv2 compiler allows code authors to
qualify suitable pointers for compilation using capabilities,
implicitly confirming that any manipulation of the pointer
is compatible with those restricted rights; e.g., that subtrac-

tion of the base field is not required. Ideally, however, the
compiler would be able to automatically employ capabili-
ties for all pointers, subject to binary-compatibility concerns
with capability-unaware code, which requires more broad
support for arbitrary pointer arithmetic. We found, for ex-
ample, that real-world code such as tcpdump (see §5.2) un-
dertakes pointer arithmetic which, during intermediate steps,
goes beyond the bounds of the structure the pointer is sup-
posed to be referencing, but which (usually) ends up within
the bounds during a memory access. To make CHERI-style
capabilities better fit the C-based pointer idiom, and allow
automated use with unqualified pointers, we have therefore
extended the memory capabilities found in CHERIv2 with
the attributes of fat pointers, to produce the CHERIv3 ISA.
Our fat-capabilities add an offset to the CHERIv2 capability
model to form: (base, bound, offset, permissions).

The general idea of a fat pointer is well explored and
their benefits in providing spatial memory safety are well
documented: pointers are supplemented by base and bounds
values that, on dereference, throw a trap if an inappropri-
ate access is requested. CHERIv3 fat-capabilities have two
advantages over conventional fat pointers: (1) fat-capability
integrity and non-decreasing rights are guaranteed by the
hardware capability model while still supporting arbitrary
pointer arithmetic; and (2) the permissions field permits ad-
ditional hardware-checked constraints to be imposed, poten-
tially for garbage collection or information-flow labeling.
Integrity is especially important in the presence of concur-
rency: a thread-safe fat pointer implementation must guar-
antee that the entire fat pointer is updated atomically.

These distinctions allow memory capabilities to be used
as building blocks for higher-level security features. The
total memory that is reachable from a piece of code is the
transitive closure of the memory capabilities reachable from
its capability registers, making it possible for some threads
(for example) to have limited rights to memory within a
program. The addition of permissions allows capabilities to
be tokens granting certain rights to the referenced memory.
For example, a memory capability may have permissions
to read data and capabilities, but not to write them (or just
to write data but not capabilities). Attempting any of the
operations that is not permitted will cause a trap.

This allows memory capabilities to enforce the const

qualifier on pointers, by removing the store permission. We
did implement support for this in the original C compiler for
CHERIv2, but found that it broke a large amount of code.
We subsequently added __input and __output qualifiers
that make it possible to declaratively discard write and read
permissions, respectively.

It is possible in the CHERIv2 model to implement fat
pointers as a pair of a capability and an (integer) offset. This
has several disadvantages. The first is the size. CHERIv2
capabilities are already 256 bits and must be aligned. The
alignment requirement would mean that an array of fat point-



INSTRUCTION USE

CIncOffset Adds an integer to the offset
CSetOffset Sets the offset
CGetOffset Returns the current offset
CPtrCmp Compares two capabilities
CFromPtr Converts a MIPS pointer to a capability
CToPtr Converts capability to a MIPS pointer

Table 2. New CHERI instructions to better support C

ers represented this way would use 64 bytes per pointer, al-
though 24 of those would be padding. This approach would
also make atomic updates to pointers difficult. Updating a
pointer in memory requires writing the capability and the in-
teger value atomically, which is not something that is easy to
add with current DRAM memory widths.

To access this new offset, we added the instructions de-
scribed in Table 2. In addition to these extra instructions, we
modified CIncBase to update the pointer such that the offset
remained constant and modified all of the load and store op-
erations to use the pointer value. Our total changes amount
to 496 lines of changes to the Bluespec source for the proces-
sor and 218 lines of changes to the test suite. These changes
did not alter the critical path of the pipeline—the virtual ad-
dress calculation for loads and stores—which is now done by
adding the offset to the pointer, rather than to the base. It did
add a small amount of complexity to the bounds checking
logic. This now checks the resulting address against the base
and top, rather than just against the length, so this pipeline
stage (which happens in parallel with the cache fetch) is ex-
tended in length by one OR operation.

To avoid accidentally leaking virtual addresses into inte-
ger registers, we added a CPtrCmp instruction that compares
the base plus offset of two capabilities as if they were point-
ers. This instruction orders all tagged capabilities after all
untagged capabilities. Integer values stored in a capability
are constructed by setting the offset of the canonical null ca-
pability and will never compare equal to any valid capability.

4.2 Interoperability
We added two instructions, CToPtr and CFromPtr, to con-
vert between a capability and a traditional pointer. These
take three operands, the capability and integer registers as
the input and output, and a base capability that indicates the
capability to which linear pointers are relative.

The CFromPtr instruction allows a pointer to be derived
from the default data capability. It has special case behavior
of giving a canonical null capability (all zeros with the tag
bit cleared) if the offset within the default capability is 0, to
adhere to C’s null pointer semantics. CToPtr provides the
address of the capability as an offset from a base capability
(so that it can be used as a pointer relative to the default data
capability) or 0 if this value would be out of range.

As bounds information is not carried by traditional point-
ers, these instructions must be used carefully and are relevant
only in a hybrid environment, where the memory-safe capa-
bility view and the traditional view of pointers are mixed.
As our canonical null capability is untagged, it can never be-
come a valid capability. Arithmetic may alter the offset of
the NULL capability allowing constructions such as return-
ing -1 from mmap() to indicate failure.

As long as the appropriate modifications are made for
each instance of its use, with CHERIv3, a __capability

-qualified pointer can be used anywhere (library interfaces
permitting) that a traditional pointer can. When a capability-
qualified pointer is used in a union and then modified as a
non-capability type, the result is an invalid capability that
will trap when used for memory access. This is provided by
CHERI’s tagged memory, which clears the is-a-capability
tag bit associated with the memory when a non-capability
operation is used to store to a given address.

CHERIv3 C supports storing data in unused bits of a
pointer as the pointer can point anywhere in the virtual ad-
dress space (but must be within the bounds before it can be
used). These programmer optimizations rely on the knowl-
edge of implementation-defined behavior (such as the align-
ment of types and representation of pointers) to be efficient.
As such, we consider it sufficient that they work, without
requiring that they be efficient.

With CHERIv3, it is possible to use a code capability for
every function. Each function invocation becomes a capa-
bility jump-and-link-register (CJALR) instruction, which re-
places the PCC with a new capability register, the PC with a
new register, and saves the old ones. This means that when
a function is executing, it is impossible to jump out of it
without an explicit call. Unfortunately, implementing this in
practice is somewhat difficult as compilers and linkers make
assumptions about their ability to place constants close to
functions and depend on the program counter address to lo-
cate globals. Resolving this would require a completely new
ABI, which is the subject of ongoing work.

We have implemented a relocating generational garbage
collector for CHERIv3 that uses the tagged memory to dif-
ferentiate between capabilities and other data. Determining
how much software will be broken by this is ongoing work.

5. Evaluation
To evaluate our approach, we consider two questions:

• To what extent does compilation of the current C-
language corpus depend on C idioms specific to PDP-
11-like concrete implementations?

• How do alternative memory models function with respect
to correctness and performance of C applications?

We explored the first question earlier, discovering a set of
common idioms, and extracting simple test cases for each of
them. Having identified these cases, we explored which of



them will function with different interpretations of the stan-
dard. In addition to the x86 and MIPS baselines, the orig-
inal CHERIv2 implementation, and our CHERIv3 variant,
we implemented a translator for C code into a simple ab-
stract machine interpreter. This runs very slowly but allows
us to quickly modify the abstract machine and run the test
cases extracted from the idioms to see which fail.

For the second question, we evaluated the two CHERI
C implementations against the same code compiled using
the MIPS ABI. For this part of the evaluation, we added
__capability qualifiers to pointers in the application, but
retained the non-memory-safe versions for external pointers
– for example, for use with system library routines.

5.1 Comparing implementation models
These results are shown in Table 3. They contrast traditional
PDP-11-like x86 and MIPS implementations with the fol-
lowing other possibilities:

HardBound refers to the model as described in [12].

Intel MPX refers to the bounds-checking extensions to x86
proposed by Intel.

Relaxed interpreter allows pointers to be constructed from
integer values as long as the object is still valid. The top
32 bits of the pointer are used to look up a valid object in
a map and the low 32 bits describe an offset.

Strict interpreter allows pointers to be reconstructed from
integers if (and only if) they are not modified in their
integer representation.

CHERIv2 describes the original C compiler for CHERI,
without offset support, where pointer addition decreases
the range of the underlying capability.

CHERIv3 describes a new version of the CHERI ISA that
allows capabilities to act as fat pointers.

The MIPS and x86 abstract machines do not differ in
ways relevant to our analysis.

Several of the results in this table require additional ex-
planation. Both CHERI implementations allow storing ca-
pabilities in integers of type intcap_t, but not in normal
C integers. The CHERIv3 implementation performs arith-
metic on these using the offset, and so does permit arbitrary
arithmetic. The original CHERI implementation permitted
only storing and loading of these values. The Strict imple-
mentation has the same restriction: pointers can be stored in
integers, but any arithmetic will invalidate the pointers.

These provide five points on a continuum trading safety
for compatibility. CHERIv3 supports all of the idioms that
we identified as being important to avoid breaking for com-
patibility with existing code. We address the const enforce-
ment issue by making const advisory and providing a new
qualifier (__input) that is hardware enforced. There is also
the caveat that storing pointers in integers and performing

arbitrary arithmetic is allowed only in places where doing so
would not damage the memory-safety model.

The Strict model is close to our ideal interpretation of
the C standard, disallowing a large set of operations that
are potentially dangerous. Unfortunately, Strict also breaks
many assumptions in existing code. Given the amount of
time taken to ensure that the majority of C code is 64-bit
clean, it is important to provide incremental steps to improve
C code. The CHERIv3 target is attainable in the short term
with small amounts of work, from which it will be easier to
refine code to operate in an environment where pointers are
strictly distinct from integers.

Intel’s MPX and HardBound both rely on explicit instruc-
tions to tag pointer bounds. This approach relies on the com-
piler being able to determine that it is operating on a pointer.
Casting a pointer to an integer and then performing arbitrary
arithmetic prevents the compiler from asserting the bounds.
These two models (neither is yet available as an implemen-
tation, although Intel provides an MPX simulator) provide
subtly different tradeoffs. The Intel version leans more in the
direction of compatibility. If a pointer is modified in such
a way that the MPX extensions are not updated, then the
value will fail its check against the copy of the pointer in the
look-aside table that the CPU uses to maintain the pointer
state. If this occurs, then the bounds checks succeed uncon-
ditionally. This preserves compatibility, but at the expense of
safety. In contrast, HardBound does not store the pointer in
the look-aside table and so will assume the old bounds, even
if the pointer now refers to a different object and so will fail
closed, preferring a detectable error to compatibility. Both
have integer arithmetic on pointers and masking marked as
not working, although this does depend on whether the com-
piler is able to correctly propagate the bounds.

In our simple test cases, MPX failed the Container check
because the compiler associated bounds with the inner
pointer and so hit a bounds check. Our test cases passed
for MPX with arbitrary arithmetic and masking, but this de-
pends on the compiler updating the bounds correctly. This
is more difficult in programs where the compiler cannot see
that a particular integer contains a pointer value.

MPX also suffers significant problems with atomicity. Its
metadata is stored in look-aside tables, in separate pages
to the relevant data. This leads to race conditions in multi-
threaded environments, as both locations must be changed in
response to pointer modifications. As MPX relies on explic-
itly updating pointer metadata, it is also difficult to imple-
ment memcpy and similar functions, which must copy mem-
ory without being aware of the types of its contents.

The “best effort” translation of integers to pointers in the
Relaxed model allows accidental construction of valid, but
incorrect, pointers. This cannot happen with the CHERI ver-
sion, as unsafe arithmetic would invalidate the capability,
and provides an interesting alternative similar to some at-
tempts at adding bounds checking to C code; it gives little



PROGRAM DECONST CONTAINER SUB II INT IA MASK WIDE

x86/MIPS/PDP-11 yes yes yes yes yes yes yes no
HardBound yes yes yes yes (yes) no no no
Intel MPX yes no yes yes (yes) (yes) (yes) no

Relaxed yes yes yes yes yes yes yes no
Strict yes yes yes yes (yes) no no no

CHERIv2 no no no no (yes) no no no
CHERIv3 yes yes yes yes (yes) yes yes no

Table 3. Summary of idioms supported by different interpretations of the C abstract machine.

benefit in terms of source compatibility, compared to the ca-
pability version, in exchange for a weaker memory model.

All of our original set of requirements for an implemen-
tation of a low-level language, meet the expressiveness re-
quirement, according to the specification—except for the
original CHERI implementation. The lack of pointer sub-
traction means that the implementation did not meet the
requirements of the abstract machine. More interesting is
whether it captures the semantics expected by programmers.
From Table 1, we observe that most C code can function with
the restrictions imposed by CHERI. The relaxed restrictions
in our modified CHERI will still break code that expects to
be able to remove a const qualifier, but the only other mod-
ification required is changing the intptr_t typedef to re-
fer to the intcap_t type and ensuring that this type is used
whenever pointers are stored in integer values.

CHERIv2 and CHERIv3 score very highly on efficiency.
Each C operation is a short sequence of machine instruc-
tions. Loads and stores are single instructions, and address
calculations are either register or immediate offsets, or the
result of a CSetOffset or CIncOffset instruction.

The exposure requirement is a bit more difficult to judge
objectively. For the CHERI implementation, all of the func-
tionality of the underlying substrate is exposed, and the prop-
erties of a capability (length, permissions, and so on) can be
queried via intrinsics.

5.2 Whole program testing
Having demonstrated that our modified CHERI ought to
be able to implement almost all of the requirements of C
code, we next attempt to validate that assumption by porting
a small selection of programs to run on it. We used the
Olden benchmark suite (which is heavy in pointer use and
so demonstrates a worst case for CHERI), Dhrystone (a less
pointer-intensive benchmark), tcpdump (as an illustrative
application), and zlib (as an illustrative library).

Table 4 shows the number of lines of code and percentage
of the total changed to adapt each to run on CHERIv2 and
CHERIv3. All of these results are for CHERI synthesized to
run at 100MHz on a Stratix IV FPGA. The L1 data cache
is 16KB and the L2 cache is 64KB. This is smaller than
most contemporary processors, but the DDR DRAM is faster

212 213 214 215 216 217 218 219 220 221
0

10

20

30

File size (bytes)

Ti
m

e
di

ff
er

en
ce

(%
)

CHERI
CHERI (copying)

Figure 4. Overhead of CHERI-zlib normalized against zlib
compiled for a conventional MIPS ISA.

relative to the CPU speed, so cache misses are more common
but less costly than on most modern processors.

The first column shows the lines whose only changes are
to mark pointers as capabilities. We made these changes
manually to understand their placement, but the compiler
can now use capabilities to represent all pointers. The im-
portant numbers are the semantic changes required because
of the different memory models.

Having ported the code, we benchmarked it with unmodi-
fied MIPS code and CHERIv3. The Olden benchmarks were
run with the parameters in the CHERI ISCA paper [35]. The
Olden results are shown in Figure 1. The Dhrystone bench-
mark was run for 500,000 iterations on each run and the re-
sults are shown in Figure 2. Finally, the performance of tcp-
dump was measured by processing the first 100,000 packets
from the A.pcap061106170025.pcap file from a network
trace from OSDI 2006[6] is shown in in Figure 3.

The slowdown for tcpdump (unmodified MIPS vs.
CHERIv3) was 4%±3%. For comparison, small changes to
optimizations in our LLVM gave a 15% speedup for tcp-
dump, so 4% is well within the margin for errors. Changes
in cache and TLB pressure resulting from small changes to
code layout can be larger. The Dhrystone results show the
CHERI version to be around 2% faster than the MIPS code,
but this is well within the margin of error simply for changes
to instruction cache usage. These results lead us to believe
that strong memory protection need not incur a statistically
significant slowdown. The T-test places the difference in per-
formance at 95% confidence below the experimental varia-
tion from small changes to compiler performance.



CHERIV2 CHERIV3

PROGRAM Baseline LoC Annotation Semantic Total Annotation Semantic Total

Olden 1519 53 (3.5%) 0 (0%) 53 (3.5%) 53 (3.5%) 0 (0%) 53 (3.5%)
Dhrystone 448 11 (2.4%) 0 (0%) 11 (2.4%) 11 (2.4%) 0 (0%) 11 (2.4%)

tcpdump 66555 3006 (4.5%) 1,577 (2.4%) 4583 (6.9%) 3006 (4.5%) 2 (0.0%) 3008 (4.5%)

Table 4. Lines of code changed to port from MIPS to CHERIv2 and CHERIv3

Smaller is better

Bisort
MST

Treeadd
Perimeter

0

50

100

0

Ti
m

e
(s

ec
on

ds
)

MIPS
CHERIv2
CHERIv3

Figure 1. Olden results

Bigger is better

MIPS
CHERIv2

CHERIv3
0

10,000

20,000

30,000

0
D

hr
ys

to
ne

s
(p

er
-s

ec
on

d)

Figure 2. Dhrystone results

Smaller is better

MIPS
CHERIv2

CHERIv3
0

50

100

0

Ti
m

e
(s

ec
on

ds
)

Figure 3. Tcpdump results

The effort required to port C code to a memory-safe envi-
ronment depends significantly on the coding style employed.
We have observed that the code that could most benefit from
a memory-safe substrate (judging from published vulnera-
bilities related to memory errors) is also the code that is
harder to port. This observation is one of the motivations for
allowing unmodified MIPS code in our CHERI implementa-
tion: it allows us to apply coarse-grained sandboxing to such
code. This means that even if we have to use non memory-
safe code, the damage it can cause can be restricted.

The two benchmark suites that we modified are both con-
servative in their pointer use. They required changes only to
annotate some values with __capability, and performed
little or no unusual pointer arithmetic. In a pure capability
environment, no annotation would be required. This is fairly
common in benchmark code. The performance difference
between them is primarily due to the larger pointers caus-
ing more cache misses. In spite of the relatively small cache
on CHERI (16KB L1, 64KB L2), this overhead is signifi-
cant only in the Olden benchmarks, which create and walk
pointer-based data structures. Neither a CPU-focused bench-
mark nor a real application showed significant slowdown.

The tcpdump codebase is very different from the bench-
marks in terms of porting effort. Packet dissection involves
substantial pointer arithmetic—ironically, frequently in ser-
vice of hand-crafted software bounds checking. Unfortu-
nately, tcpdump typically runs as root (to access raw packet
data from a network interface), and is often used for inspect-
ing suspicious network traffic. This means that its packet
parsers—written using extensive pointer arithmetic—are ex-
posed to malicious data. Crafting malicious packets that

crash tcpdump (if not execute arbitrary code) to blind oppo-
nents is a common strategy in capture the flag uompetitions.
The code would benefit substantially from strong memory
safety, yet written in a style that makes this very difficult.

Porting tcpdump to CHERIv2 required changes to around
1.6K lines to avoid pointer subtraction: around 2.5% of the
total codebase. CHERIv3 is fully able to support the parts of
the C standard expected by these codebases. Only, two lines
of code had to be changed in just one file, to ensure that tcp-
dump has read-only access to the packet being parsed rather
than the whole packet buffer. This change was not strictly
required, but provided stronger and finer-grained protection
than would otherwise be possible.

We then modified the compiler to support a new ABI in
which all pointers are implemented as capabiliting, includ-
ing references to on-stack objects, which are derived from
a stack capability. We then compiled two versions of zlib
using this mode. The first is entirely unmodified internally,
but requires some annotations in a header to allow it to be
work with code using the MIPS ABI. This was limited to a
single pragma at the start and end of the library header, and
was required because zlib passes pointers across the library
interface. This approach breaks binary compatibility for the
library (though it retains source compatibility), so we also
implemented a second version that preserves binary com-
patibility by copying structures whose layouts have changed
whenever they are passed across the library boundary.

Figure 4 shows the results for compressing files of vary-
ing sizes with the two modified and one unmodified version
of zlib, linked to the gzip program. Simply using capabili-
ties incurs no measurable overhead for large files and a small



overhead for small files (there is a small constant overhead
for setting up the capability environment). Copying data at
the library boundaries to maintain binary compatibility in-
curs around a 21% overhead, independent of file size.

6. Related work
Substantial prior work targets improving C memory safety.
Early examples include Cyclone [17], which explicitly broke
compatibility with C to define a safer C dialect. Cyclone’s
abstraction is close to our model, but adds many static anno-
tations. Although Cyclone was not widely adopted, it influ-
enced pointer annotation in current C compilers.

The copious buffer overflow vulnerabilities in C code-
bases have spurred development of a number of other
bounds-checking systems. Research tools HardBound [12]
and SoftBound [22] add fine-grained bounds checking to
C, followed by commercial work, such as Intel’s Memory
Protection Extensions [15]. None of these approaches han-
dles some of the complex cases (for example, xor linked
lists) outlined here, the key difference being that the Hard-
Bound and SoftBound approaches will fail closed (prevent-
ing potentially dangerous memory accesses if the can’t track
pointer provenance), whereas the Intel solution will fail open
(allowing unsafe access if the bounds can’t be determined).

Memory-related exploit techniques have spawned sub-
stantial work in vulnerability scanning and dynamic mitiga-
tion [27]. Static analysis tools such as lint [14] and general
bug pattern-matching tools [4] are effective for local anal-
yses, but are limited by weak type safety, global program
complexity, and difficult-to-analyze dynamic behaviors. Dy-
namic protections such as stack canaries and address-space
layout randomization offer probabilistic protection for spe-
cific exploits [7], but suffer a constant escalation [29].

To run untrusted C code within a process that con-
tains other data rights, SFI [30] and Google’s Native Client
(NaCl) [36] provide coarse-grained isolation for native code.
Similar techniques like Robusta [28] (and earlier work on
process isolation [10]) isolate almost a million lines of C
code libraries from JVM’s. Without isolation or a memory-
safe substrate, a single pointer error in the native code can
damage the entire VM, including the typesafe Java code.

SAFECode and SVA [8, 9] provide control flow integrity
and memory safety in TCB code, specifically in kernels, via
compiler transforms. We believe that the run-time overhead
of these techniques would be lower with hardware assistance
described in this paper, and would provide powerful tools for
quickly moving existing code to such a substrate.

Emscripten [37] is an interesting example of an unusual
deployment target for C, running C code in a JavaScript VM.
The runtime violates our exposure requirement by creating
the C heap in a single JavaScript object and not exposing the
JavaScript memory model. Microsoft’s various approaches
to running C++ code in the .NET CLR [19] also provide
some inspiration. These introduce different types of pointer

to differentiate between fully GC’d memory and “pinned”
pointers, which have stable integer values. With better hard-
ware support for protection, we argue that it becomes much
easier to implement systems like these, with low-level code
running in the same environment to managed code.

7. Conclusion
Lack of memory safety in C leads to real and significant
vulnerabilities, particularly as near-ubiquitous networking
for conventional computers and mobile devices has exposed
users to unprecedented malicious activity. This has reinvigo-
rated interest in fine-grained memory protection to mitigate
exploit techniques. However, widespread assumptions about
pointer behavior, unwarranted by the C abstract machine but
consistent with the PDP-11 memory model, produce sub-
stantial compatibility problems in real-world programs that
might most benefit from additional protection.

To address these problems, we survey C-pointer idioms
across a large open-source corpus to understand the effective
consensus on pointer use that constrains memory-protection
schemes. We are then able to describe a range of points in
the protection and compatibility tradeoff space.

Observing potentially significant source-code compati-
bility, we propose a new model, fully described and im-
plemented as the CHERIv3 ISA, that combines CHERI’s
capability-system model with results from recent fat-pointer
research. Whole-program testing against conventional RISC,
CHERIv2, and CHERIv3 illustrates significantly improved
source-code compatibility relative to a pure capability-
system model, as well as modest performance improvement.

These results confirm that it is possible to retain the strong
semantics of a capability-system memory model (which pro-
vides non-bypassable memory protection) without sacrific-
ing the advantages of a low-level language.

Acknowledgments
We thank our colleagues – especially Ross Anderson, Gre-
gory Chadwick, Nirav Dave, Khilan Gudka, Steve Hand,
Stephen Kell, Ben Laurie, Ilias Marinos, A Theodore Mar-
kettos, Ed Maste, Andrew W. Moore, Prashanth Mund-
kur, Steven J. Murdoch, Robert Norton, Hassen Saidi, Pe-
ter Sewell, Stacey Son, and Bjoern Zeeb; we also thank our
anonymous reviewers for their feedback.

This work is part of the CTSRD and MRC2 projects that
are sponsored by the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contracts FA8750-10-C-0237 and FA8750-
11-C-0249. The views, opinions, and/or findings contained
in this paper are those of the authors and should not be
interpreted as representing the official views or policies,
either expressed or implied, of the Department of Defense or
the U.S. Government. We gratefully acknowledge Google,
Inc. for its sponsorship.



References
[1] Is address space 1 reserved? URL http://lists.cs.uiuc.

edu/pipermail/llvmdev/2015-January/080288.html.

[2] Alelph One. Smashing the stack for fun and profit. Phrack
Magazine, 7:14–16, 1996.

[3] ARM Architecture Reference Manual. ARMv8, for ARMv8-
A architecture profile. ARM Limited, 110 Fulbourn Road,
Cambridge, England CB1 9NJ, 2013.

[4] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few
billion lines of code later: Using static analysis to find bugs
in the real world. Commun. ACM, 53(2):66–75, Feb. 2010.
ISSN 0001-0782. URL http://doi.acm.org/10.1145/

1646353.1646374.

[5] H.-J. Boehm and M. Weiser. Garbage collection in an unco-
operative environment. Softw. Pract. Exper., 18(9):807–820,
Sept. 1988. ISSN 0038-0644. . URL http://dx.doi.org/

10.1002/spe.4380180902.

[6] R. Chandra, V. Padmanabhan, and M. Zhang. CRAWDAD
data set microsoft/osdi2006 (v. 2007-05-23). Downloaded
from http://crawdad.org/microsoft/osdi2006/, May 2007.

[7] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer
overflows: attacks and defenses for the vulnerability of the
decade. In DARPA Information Survivability Conference and
Exposition, 2000. DISCEX ’00. Proceedings, volume 2, pages
119–129 vol.2, 2000. .

[8] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure
virtual architecture: A safe execution environment for com-
modity operating systems. In SOSP ’07: Proceedings of the
Twenty First ACM Symposium on Operating Systems Princi-
ples, October 2007.

[9] J. Criswell, N. Geoffray, and V. Adve. Memory safety for
low-level software/hardware interactions. In Proceedings of
the Eighteenth Usenix Security Symposium, August 2009.

[10] G. Czajkowski, L. Daynes, and M. Wolczko. Automated and
portable native code isolation. In Software Reliability Engi-
neering, 2001. ISSRE 2001. Proceedings. 12th International
Symposium on, pages 298–307, Nov 2001. .

[11] R. Dannenberg, W. Dormann, D. Keaton, R. Seacord, D. Svo-
boda, A. Volkovitsky, T. Wilson, and T. Plum. As-if infinitely
ranged integer model. In Software Reliability Engineering (IS-
SRE), 2010 IEEE 21st International Symposium on, pages 91–
100, Nov 2010. .

[12] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic.
Hardbound: Architectural support for spatial safety of the C
programming language. SIGPLAN Not., 43(3):103–114, Mar.
2008. ISSN 0362-1340. . URL http://doi.acm.org/10.

1145/1353536.1346295.

[13] J. Evans. A scalable concurrent malloc(3) implementation for
FreeBSD. In BSDCan, 2006.

[14] Gimpel Software. FlexeLint for C/C++, August 2014. URL
http://www.gimpel.com/html/flex.htm.

[15] Intel Plc. Introduction to Intel R© memory protection exten-
sions. http://software.intel.com/en-us/articles/

introduction-to-intel-memory-protection-extensions,
July 2013.

[16] ISO. ISO/IEC 9899:2011 Information technology —
Programming languages — C. International Organiza-
tion for Standardization, Geneva, Switzerland, Dec. 2011.
URL http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=

57853.

[17] T. Jim, J. G. Morrisett, D. Grossman, M. W. Hicks, J. Cheney,
and Y. Wang. Cyclone: A safe dialect of C. In Proceedings
of the General Track of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’02, pages 275–288,
Berkeley, CA, USA, 2002. USENIX Association. ISBN 1-
880446-00-6. URL http://dl.acm.org/citation.cfm?

id=647057.713871.

[18] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, Jr., and
A. DeHon. Low-fat pointers: Compact encoding and efficient
gate-level implementation of fat pointers for spatial safety
and capability-based security. In Proceedings of the 2013
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’13, pages 721–732, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2477-9. . URL http:

//doi.acm.org/10.1145/2508859.2516713.

[19] Managed C++. Managed extensions for C++ specification.
http://msdn.microsoft.com/en-us/library/Aa712867 (accessed
2014/07/14).

[20] Microsoft Corporation. CONTAINING RECORD macro.
URL http://msdn.microsoft.com/en-us/library/

windows/hardware/ff542043%28v=vs.85%29.aspx.

[21] Mitre. CWE/SANS top 25 most dangerous software errors,
2011. URL http://cwe.mitre.org/top25.

[22] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.
Softbound: Highly compatible and complete spatial memory
safety for C. In Proceedings of the 2009 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, PLDI ’09, pages 245–258, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-392-1. . URL http:

//doi.acm.org/10.1145/1542476.1542504.

[23] G. C. Necula, S. McPeak, and W. Weimer. Ccured: Type-
safe retrofitting of legacy code. In Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’02, pages 128–139, New York,
NY, USA, 2002. ACM. ISBN 1-58113-450-9. . URL
http://doi.acm.org/10.1145/503272.503286.

[24] M. Richards. BCPL: A Tool for Compiler Writing and System
Programming. In Proceedings of the May 14-16, 1969, Spring
Joint Computer Conference, AFIPS ’69 (Spring), pages 557–
566, New York, NY, USA, 1969. ACM. . URL http:

//doi.acm.org/10.1145/1476793.1476880.

[25] D. Ritchie, S. Johnson, M. Lesk, and B. Kernighan. UNIX
time-sharing system: The C programming language. Bell
System Technical Journal, 57(6):1991–2019, July-Aug 1978.

[26] J. Saltzer and M. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–
1308, September 1975. URL http://www.multicians.

org.

http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/080288.html
http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/080288.html
http://doi.acm.org/10.1145/1646353.1646374
http://doi.acm.org/10.1145/1646353.1646374
http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1002/spe.4380180902
http://doi.acm.org/10.1145/1353536.1346295
http://doi.acm.org/10.1145/1353536.1346295
http://www.gimpel.com/html/flex.htm
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://dl.acm.org/citation.cfm?id=647057.713871
http://dl.acm.org/citation.cfm?id=647057.713871
http://doi.acm.org/10.1145/2508859.2516713
http://doi.acm.org/10.1145/2508859.2516713
http://msdn.microsoft.com/en-us/library/windows/hardware/ff542043%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff542043%28v=vs.85%29.aspx
http://cwe.mitre.org/top25
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/1542476.1542504
http://doi.acm.org/10.1145/503272.503286
http://doi.acm.org/10.1145/1476793.1476880
http://doi.acm.org/10.1145/1476793.1476880
http://www.multicians.org
http://www.multicians.org


[27] H. Shahriar and M. Zulkernine. Mitigating program security
vulnerabilities: Approaches and challenges. ACM Comput.
Surv., 44(3):11:1–11:46, June 2012. ISSN 0360-0300. URL
http://doi.acm.org/10.1145/2187671.2187673.

[28] M. Sun, G. Tan, J. Siefers, B. Zeng, and G. Morrisett. Bringing
Java’s wild native world under control. ACM Trans. Inf. Syst.
Secur., 16(3):9:1–9:28, Dec. 2013. ISSN 1094-9224. . URL
http://doi.acm.org/10.1145/2535505.

[29] L. Szekeres, M. Payer, T. Wei, and D. Song. Eternal war in
memory. In IEEE Symposium on Security and Privacy, 2013.

[30] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Ef-
ficient software-based fault isolation. In SOSP ’93: Proceed-
ings of the fourteenth ACM Symposium on Operating Systems
Principles, pages 203–216, New York, NY, USA, 1993. ACM.
ISBN 0-89791-632-8.

[31] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F. Kaashoek.
Improving integer security for systems with KINT. In Pro-
ceedings of the 10th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’12, pages 163–177,
Berkeley, CA, USA, 2012. USENIX Association. ISBN 978-
1-931971-96-6. URL http://dl.acm.org/citation.

cfm?id=2387880.2387897.

[32] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-
Lezama. Towards optimization-safe systems: Analyzing the
impact of undefined behavior. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 260–275, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-2388-8. . URL http://doi.acm.org/

10.1145/2517349.2522728.

[33] R. N. Watson, P. G. Neumann, J. Woodruff, J. Anderson,
D. Chisnall, B. Davis, B. Laurie, S. W. Moore, S. J. Mur-
doch, and M. Roe. Capability Hardware Enhanced RISC In-
structions: CHERI Instruction-set architecture. Technical Re-
port UCAM-CL-TR-850, University of Cambridge, Computer
Laboratory, Apr. 2014. URL http://www.cl.cam.ac.uk/

techreports/UCAM-CL-TR-850.pdf.

[34] R. N. M. Watson, P. G. Neumann, J. Woodruff, J. Ander-
son, D. Chisnall, B. Davis, B. Laurie, S. W. Moore, S. J.
Murdoch, and M. Roe. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-set architecture. Tech-
nical Report UCAM-CL-TR-864, University of Cambridge,
Computer Laboratory, 15 JJ Thomson Avenue, Cambridge
CB3 0FD, United Kingdom, phone +44 1223 763500, Dec.
2014. URL http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-864.pdf.

[35] J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore,
J. Anderson, B. Davis, B. Laurie, P. G. Neumann, R. Norton,
and M. Roe. The CHERI capability model: Revisiting RISC in
an age of risk. In Proceedings of the 41st International Sym-
posium on Computer Architecture (ISCA 2014), June 2014.

[36] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A
sandbox for portable, untrusted x86 native code. Commun.
ACM, 53(1):91–99, Jan. 2010. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/1629175.1629203.

[37] A. Zakai. Emscripten: An LLVM-to-JavaScript Compiler. In
Proceedings of the ACM International Conference Compan-

ion on Object Oriented Programming Systems Languages and
Applications Companion, SPLASH ’11, pages 301–312, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0942-4. .
URL http://doi.acm.org/10.1145/2048147.2048224.

http://doi.acm.org/10.1145/2187671.2187673
http://doi.acm.org/10.1145/2535505
http://dl.acm.org/citation.cfm?id=2387880.2387897
http://dl.acm.org/citation.cfm?id=2387880.2387897
http://doi.acm.org/10.1145/2517349.2522728
http://doi.acm.org/10.1145/2517349.2522728
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-850.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-864.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-864.pdf
http://doi.acm.org/10.1145/1629175.1629203
http://doi.acm.org/10.1145/2048147.2048224

	Introduction
	Common idioms
	The C abstract machine
	Primitive types
	Ranges and representations
	Pointers
	The null pointer

	State of the unions
	Code and data memory
	Const enforcement
	Pointer provenance
	Garbage hoarding

	Refining the CHERI model
	Converging capabilities and fat pointers
	Interoperability

	Evaluation
	Comparing implementation models
	Whole program testing

	Related work
	Conclusion

